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Abstract. Roughly speaking, a population is said to have an ideal free distri-

bution on a spatial region if all of its members can and do locate themselves in a

way that optimizes their fitness, allowing for the effects of crowding. Dispersal
strategies that can lead to ideal free distributions of populations that use them

have been shown to exist and to be evolutionarily stable in a number of mod-

els for a single population. Those models include reaction-diffusion-advection
equations and the analogous models using discrete diffusion or nonlocal dis-

persal described by integrodifferential equations. Furthermore, in the case of

reaction-diffusion-advection models and their nonlocal analogues, for environ-
ments that are static in time there are strategies that allow populations to

achieve an ideal free distribution by using only local information about envi-
ronmental quality and/or gradients. In this paper, we extend some of these

ideas and results to certain Lotka-Volterra type predator-prey systems. In the

case of single-species models it is often possible to do the analysis via methods
based on monotonicity, but in the predator-prey context those fail so we use

methods based on a Lyapunov functional.

1. Introduction. The evolution or adoption of dispersal strategies has been a topic
of interest in evolutionary ecology and foraging theory for decades; see for example
[12, 19, 20, 24, 27, 34] among many others. One focus of that interest has been
on understanding whether individuals or populations can develop dispersal strate-
gies that are optimal in some sense. Addressing that issue requires some notion
of optimality. Two major approaches that have been used to characterize optimal
dispersal strategies are game theory and adaptive dynamics. In the game theoretic
approach it is typical to define and compute payoffs that arise from using specified
strategies, then use those to decide which strategies correspond to Nash equilib-
ria, evolutionarily stable strategies, etc. These properties can be characterized in
part by comparing the payoffs of different strategies. The adaptive dynamics ap-
proach avoids the direct computation of payoffs by looking directly at the problem
of whether a population using one strategy can invade or resist invasion by popula-
tions using other strategies. That approach is more feasible than directly calculating
payoffs in the case of complex models such as reaction-advection-diffusion equation-
s, where it is difficult to obtain explicit solutions but qualitative properties such as
the stability of equilibria can often be determined. An important idea about opti-
mal dispersal or foraging is the ideal free distribution [30, 31]. It is based on the
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idea that if organisms have complete knowledge of their environment and are able
to move freely, they will locate themselves to optimize their fitness. The ideal free
distribution has been treated mathematically from the viewpoints of game theory
[25, 26, 42, 33] and adaptive dynamics [5, 11, 13, 14, 15, 16, 17, 18, 24, 45]. A large
fraction of those treat single species models. For single species models, in many
cases dispersal strategies that lead to an ideal free distribution have been shown
to be optimal in some sense. However, the situation for coevolution of movemen-
t in predator-prey models is more complicated; see [28, 29, 42]. Game theoretic
treatments have considered predator-prey systems. Vlastimal Křivan has worked
extensively in that area; see [38, 39, 40, 41] among others. Křivan et al. provide
a game theoretic definition of the ideal free distribution for two species in a two
patch environment and show that it is evolutionarily stable in the game theoretic
sense in [42]. In this body of work populations are typically assumed to achieve
their spatial distribution on a fast timescale that is effectively instantaneous rel-
ative to other timescales in the model. Mean field games, which extend classical
game theoretic ideas and are motivated by a type of stochastic optimization, were
used in [33] to study the ideal free distribution for a predator-prey system. They
considered a continuous environment, but in their models movement was assumed
to be instantaneous, and they used a game theoretic type of optimization criterion.
The background theory of mean field games is somewhat complicated, but detailed
discussions including a description of how they can be related to the ideal free dis-
tribution are given in [33, 46]. However, other than some basic results obtained in
[11], to our knowledge the adaptive dynamics approach to the ideal free distribu-
tion has not been applied to predator-prey models. There is a limited amount of
work related to the ideal free distribution and/or to comparing dispersal strategies
in multispecies models. A treatment of three species competition and the ideal
free distribution is given in [44]. It is worth noting that our understanding of the
evolution of dispersal in general for interacting populations is much more limited
than for single populations. A recent issue of Philosophical Transactions B, (379
(1907), 12 August 2024) was devoted to the theme “Diversity-dependence of disper-
sal: interspecific interactions determine spatial dynamics.” In the beginning of the
table of contents the editors state “Our mechanistic understanding of single species
dispersal dynamics has progressed rapidly over the last decade, but the inclusion of
interactions between species as drivers of dispersal over ecological and evolutionary
time scales is largely missing.” A detailed discussion is given in the introduction [6]
of the issue.

The goal of the present study is to apply the adaptive dynamics approach to
predator-prey systems and show that in some cases dispersal strategies leading to
an ideal free distribution in predator-prey systems are evolutionarily stable. Other
approaches to optimal dispersal and/or the ideal free distribution in predator-prey
systems are developed in [7, 28, 29, 33, 38, 39, 40, 48, 49, 50, 51, 53, 54], among
others. The papers [7, 28, 29, 53] focus on mechanisms that might or might not lead
to an ideal free distribution. A numerical approach to the ideal free distribution
for reaction-diffusion-advection models for predator prey systems is developed in
the papers [51, 54], which include additional references to related topics. We will
also consider predator-prey systems in the setting of reaction-diffusion-advection
models. Our approach is analytic, in terms of theorems and proofs. We will define
a version of the ideal free distribution in the reaction-diffusion-advection context



IDEAL FREE DISPERSAL IN A PREDATOR-PREY SYSTEM 3

and prove that it is typically evolutionarily stable from the viewpoint of adaptive
dynamics.

2. Preliminaries.

2.1. The modeling approach. We start with Lotka-Volterra predator-prey mod-
els with diffusion and advection on a bounded region Ω ⊂ Rn with boundary ∂Ω of
class C2+α for some α ∈ (0, 1). Our models have the form

∂u

∂t
= Lu+ (a(x)− b(x)u− c(x)v)u (1)

∂v

∂t
= Mv + (−d(x) + e(x)u− f(x)v)v on (0,∞)× Ω

where a, b, c, d, e, f ∈ Cα(Ω), with a, b, c, d, and e positive and f nonnegative.
We will always assume that a, b, c, d, e and f are such the ODE system corre-

sponding to (1) has a positive equilibrium (u∗(x), v∗(x)) for all x ∈ Ω. (When
it exists such an equilibrium is unique and globally asymptotically stable among
positive solutions to the ODE system.)

For our main results we will also want to assume one or the other of the hypothe-
ses in Hypothesis 1:

Hypothesis 1.

(Ha) f(x) > 0 and for some constant α > 0, max
x∈Ω

(|αc(x)− e(x)|2 − 4αb(x)f(x)

< 0)),
or
(Hb) f(x) ≡ 0 and for some constant α0 > 0, e(x) = α0c(x).

(2)

The hypothesis Hb means that the rate of production e of new predators is
proportional to the rate c at which predators consume prey, and does not depend on
location but only on predator physiology, which is simplistic but not unreasonable.
If e(x) = α0c(x) then we could choose α = α0 and Ha would be satisfied if b andf
are positive everywhere. In general Ha requires roughly that the spatial variation
in the amount of prey needed to produce a new predator is not too large relative
to the logistic self limitation terms defined by b and f .

The conditions Ha and Hb are needed for technical reasons in deriving our results.
It is not clear to us what happens if the conditions Ha and Hb fail. In the case
of models in discrete space, we found in [11] that roughly speaking, strategies that
produce an ideal free distribution in predator-prey systems are typically locally
evolutionarily stable if there is self limitation in the predator equation, which in
(1) would mean f > 0 as in Ha. In the case where f ≡ 0 we were not able to
obtain similar results in [11]. We think it is likely that if f > 0 and the parameters
in the system (1) are restricted so that (1) always has a unique asymptotically
stable positive equilibrium for admissible parameters, then strategies that produce
an ideal free distribution will be evolutionarily stable. However, to our knowledge,
the detailed dynamics of Lotka-Volterra predator-prey systems with dispersal are
still not completely understood, even in the case of simple diffusion. For simple
diffusion in one space dimension the uniqueness of the positive equilibrium was
shown in [43]. In higher dimensions the structure of the set of positive equilibria
for diffusive Lotka-Volterra predator-prey models continues to be a topic of active
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research; see [52, 55]. For that reason we are uncertain about how far our present
results can be extended.

The operators L and M describe movements of predators and prey by combina-
tions of diffusion and advection. Those movements are assumed to depend on the
local environment but not on the densities of predators or prey. We will use the
forms

Lu = ∇ ·Du(x)[∇u− u∇P (x)] (3)

Mv = ∇ ·Dv(x)[∇v − v∇Q(x)]) on Ω

with no-flux boundary conditions

[∇u− u∇P (x)] · ~n = [∇v − v∇Q(x)] · ~n = 0 on ∂Ω, (4)

in where ~n denotes the outward unit normal vector, Du(x) and Dv(x) are diffusion
rates which are bounded below by positive constants, Du(x), Dv(x) ∈ C1+α(Ω),
and there is directed movement by advection up the gradients of P (x) and Q(x)
with P (x), Q(x) ∈ C2+α(Ω).

We want to compare pairs of predator-prey populations that use different move-
ment strategies. The key idea is to interpret the diffusion rates and advection
terms in the model as defining dispersal strategies and to compare strategies from
the viewpoint of adaptive dynamics via invasion analysis. This approach is used to
study the evolution of dispersal in the context of single populations in [5, 13, 14,
15, 16, 17, 18, 27, 34], among many other studies. The general background for this
type of modeling is discussed in the section of [24] on evolution. In the framework
of adaptive dynamics, the traits that can be expected to evolve are those that allow
a small population that has them to invade any population that does not, and allow
an established population to resist invasion by populations that have other traits.
Traits are interpreted as strategies. Strategies that allow a population to invade
populations using other strategies are known as neighborhood invader strategies
(NIS). Strategies that allow a population to resist invasion by populations using
other strategies are known as evolutionarily stable or evolutionarily steady (ESS).
We will show that in the coevolution of dispersal strategies for a specialized preda-
tor and its prey, strategies that produce an ideal free distribution are neighborhood
invaders and evolutionarily stable.

The ideal free distribution is a theoretical description of how a population subject
to crowding effects would distribute itself if all individuals were ideal in that they
could sense their reproductive fitness in any given location, allowing for crowding,
and were free to locate themselves so as to maximize it [30, 31]. It follows that when
at equilibrium, all individuals will have equal fitness, since otherwise some would
move to increase their fitness. Also, there would be no net movement, because
by moving to another location, an individual would increase crowding there and
reduce its fitness, unless individuals just changed places. For population models
in continuous time, the reproductive fitness is described by the overall growth rate
terms, but to have equal fitness everywhere and no population growth, the fitness
everywhere must be zero, so the population distribution should have the population
in equilibrium at each point the same as it would be with no movement. Thus, if
(u, v) is an equilibrium of (1) corresponding to an ideal free distribution, we should
have (u, v) = (u∗, v∗) where (u∗(x), v∗(x)) is the equilibrium for the ODE system
corresponding to (1) at the point x. Then the movement operators must satisfy

Lu∗ = Mv∗ = 0 on Ω, (5)
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and u∗ and v∗ must satisfy the boundary conditions in (4).
To verify that strategies that produce an ideal free distribution are ESS and

NIS versus strategies that are not, we will consider a model where another pair
of populations with densities (w, y) that are ecologically identical to those with
densities (u, v) are present in the same region Ω. That leads to the system

∂u

∂t
= Lu+ [a(x)− b(x)(u+ w)− c(x)(v + y)]u (6)

∂v

∂t
= Mv + [−d(x) + e(x)(u+ w)− f(x)(v + y)]v

∂w

∂t
= L̃w + [a(x)− b(x)(u+ w)− c(x)(v + y)]w

∂y

∂t
= M̃y + [−d(x) + e(x)(u+ w)− f(x)(v + y)]y on (0,∞)× Ω,

with operators L̃ and M̃ having the same form and the same type of boundary
conditions as as L and M :

L̃w = ∇ · D̃w(x)[∇w − w∇P̃ (x)] (7)

M̃y = ∇ · D̃y(x)[∇y − y∇Q̃(x)]) on Ω

with no-flux boundary conditions

[∇w − w∇P̃ (x)] · ~n = [∇y − y∇Q̃(x)] · ~n = 0 on ∂Ω. (8)

Standard local existence theory and regularity theory apply to (6) with boundary
conditions (4) and (8). This can be seen by using the change of variables U = e−Pu,

V = e−Qv, W = e−P̃w, Y = e−Q̃y to convert (6) to

∂U

∂t
= Du(x)∆U + [∇Du(x) +Du(x)∇P ] · ∇U (9)

+ [a(x)− b(x)(ePU + eP̃W )− c(x)(eQV + eQ̃Y )]U

∂V

∂t
= Dv(x)∆V + [∇Dv(x) +Dv(x)∇Q] · ∇V

+ [−d(x) + e(x)(ePU + eP̃W )− f(x)(eQV + eQ̃Y )]V

∂W

∂t
= D̃w(x)∆W + [∇D̃w(x) + D̃w(x)∇P̃ ] · ∇W

+ [a(x)− b(x)(ePU + e−P̃W )− c(x)(eQV + eQ̃Y )]W

∂Y

∂t
= D̃y(x)∆Y + [∇D̃y(x) + D̃y(x)∇Q̃] · ∇Y

+ [−d(x) + e(x)(ePU + eP̃W )− f(x)(eQV + eQ̃Y ]Y

on (0,∞)× Ω.

This change of variables also converts the boundary conditions (4) and (8) to
homogeneous Neumann conditions

∇U · ~n = ∇V · ~n = ∇W · ~n = ∇Y · ~n = 0 on ∂Ω. (10)

Returning to the condition (5) for L and M to produce an ideal free distribution
and writing it in terms of the variables U∗ = e−Pu∗ and V ∗ = e−Qv∗ we obtain

Du(x)∆U∗ + [∇Du(x) +Du(x)∇P ] · ∇U∗ = 0 (11)

Dv(x)∆V ∗ + [∇Dv(x) +Dv(x)∇Q] · ∇V ∗ = 0 on Ω.



6 ROBERT STEPHEN CANTRELL AND CHRIS COSNER

with homogeneous Neumann boundary conditions. The differential operators in
(9) and (11) with Neumann boundary conditions satisfy a maximum principle and
have principal eigenvalues which are simple and have eigenfunctions that can be
chosen to be positive; see for example [36]. Observe that U∗ ≡ 1 and V ∗ ≡ 1 are
solutions to (11), so any principal eigenfunctions are constants which can be chosen
to be positive. Thus we must have U∗ = e−Pu∗ = C for some constant C, so
P = ln(u∗)− lnC. Similarly, Q = ln(v∗)− lnC for some C. Hence we have

∇P =
∇u∗

u∗
and ∇Q =

∇v∗

v∗
. (12)

2.2. Basic properties of the models. The operators in (9) are in standard form,
and the boundary conditions in (10) are classical, so the standard methods and
results on reaction-diffusion-advection equations discussed in [3, 4, 9, 10, 35, 36, 37,
47] and in the references in those sources can be applied. In particular, the local
existence and uniqueness of classical solutions to the initial value problem for (9),
(10) is guaranteed, and the system generates a smooth semiflow on {(U, V,W, Y ) ∈
[C1(Ω)]4 : ∇U ·~n = ∇V ·~n = ∇W ·~n = ∇Y ·~n = 0 on ∂Ω.}. Since the map between
(U, V,W, Y ) and (u, v, w, y) is smooth and invertible, we can work with either the
system (9) and (10) or the system (6), (4) and (8) in establishing properties of the
semiflow. In particular, we will want to show that the system has a compact global
attractor so that we can apply the LaSalle invariance principle, and then find a
suitable Lyapunov functional. We will use whichever form of the system is most
convenient in any particular calculation. The analysis is very similar to that used in
[10] for systems of the form (1) where L and M are multiples of the Laplacian. The
only significant difference is that we need to verify that certain types of arguments
used in [10] still apply in the case of the more general operators and boundary
conditions defined in (3), (4), (7) and (8), which will sometimes require using the
forms (9) and (10). We will give a sketch of the analysis to show that such is the
case and to provide clarity for the convenience of readers.

In addition to being in the standard form for applying classical results on exis-
tence, regularity, etc., the operators in the system (9) and (10) have the correct form
to have maximum principles. The full system is not monotone but it is still possible
to get some information about solutions by using maximum principles for the single
equations making up the system. In the case where f(x) > 0 that information is
sufficient to imply that the systems (9) and (10) or the system (6), (4) and (8) have
global solutions, are dissipative, and have compact attractors. The case of (1) with
constant coefficients was treated by related methods in [21]. We have

Lemma 1. Any solution to (9), (10) for 0 < t < T with nonnegative initial data
is nonnegative for t > 0. Each component U, V,W or Y is either strictly positive
or identically 0 on Ω for 0 < t < T . There are constants C0(U) and C0(W )
depending on the initial data for U and W respectively, but independent of the
other components of the solution and independent of T such that U ≤ C0(U) and
W ≤ C0(W ) for 0 < t < T . If f(x) ≥ f0 > 0 for all x ∈ Ω then there are analogous
constants constants C0(V ) and C0(Y ) independent of T so that V ≤ C0(V ) and
Y ≤ C0(Y ) for 0 < t < T . In that case solutions to (9), (10), and hence to (4),(6),
and (8) exist globally in t, and the systems are dissipative and have compact global
attractors in the subspaces of functions in [C1(Ω)]4] that satisfy the appropriate
boundary conditions (4) and (8) in the case of (6), and (10) in the case of (9).
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Proof. We first describe the case of U in detail. The other cases use similar ideas.
Any solution U to the first equation in (9) satisfies an equation of the form

∂U

∂t
= Du(x)∆U + [∇Du(x) +Du(x)∇P ] · ∇U + h(t, x)U on (0, T )× Ω, (13)

with homogeneous Neumann boundary conditions, where h(t, x) is some continuous
function of x and t. It follows from the maximum principle and the boundary
conditions on U that U(t, x) ≥ 0 for 0 < t < T if U(0, x) ≥ 0, and either U > 0 or
U ≡ 0 for 0 < t < T . The same argument applies to V,W and Y . Furthermore,
any solution U to the first equation in (9) satisfying the boundary condition (10) is
also a subsolution to the equation

∂Z

∂t
= Du(x)∆Z + [∇Du(x) +Du(x)∇P ] · ∇Z + [a(x)− b(x)ePZ]Z (14)

with homogeneous Neumann boundary conditions and the same initial data as U .
It follows that U ≤ Z for 0 ≤ t < T . There is a positive constant C1 so that
[a(x) − b(x)ePC] < 0 if C > C1, so in that case Z = C is a supersolution to (14).
If we choose C0(U) > max{C1, ||U(0, x)||∞} then it follows from the comparison
principle that Z(t, x) < Z = C0(U), and hence U ≤ C0(U), for 0 ≤ t < T . The case
of W is essentially the same.

Suppose now that f(x) ≥ f0 > 0 for all x ∈ Ω, and consider the equation (9) for
V . We know that U ≤ C0(U) and W ≤ C0(W ) for 0 < t < T , so V is a subsolution
to the equation

∂S

∂t
= Dv(x)∆S + [∇Dv(x) +Dv(x)∇Q] · ∇S (15)

+ [−d(x) + e(x)(ePC0(U) + eP̃C0(W ))− f0e
QS]S

with homogeneous Neumann boundary conditions. If we choose a solution S to (15)
with S(0, x) > V (0, x) then V (t, x) < S(t, x) for 0 < t < T . Since f(x) ≥ f0 > 0 and
eQ ≥ eminQ ≥ Q0 for some Q0 > 0, equation (15) is again a logistic equation with
diffusion and advection, and any sufficiently large constant is a supersolution to it.
Choosing such a constant C0(V ) so that C0(V ) > S(0, x), we obtain S(t, x) ≤ C0(V )
and hence V (t, x) < C0(V ) for 0 < t < T , with C0(V ) independent of T . The
argument for Y is similar.

Note that in the case where f(x) ≥ f0 > 0 for all x ∈ Ω we have pointwise
bounds for U, V,W and Y that do not depend on T , so that solutions to (9) and
(10) can be extended forward arbitrarily in time and remain uniformly bounded,
that is, solutions are global in time. See [3, 4] or the discussion in [10], for example.
Once we know that solutions are global we can recall that U is a subsolution to (14)
with homogeneous Neumann boundary conditions. It is well known that for logistic
equations with diffusion and advection such as (14) all solutions with nonnegative
initial data converge to either 0 or to a unique positive equilibrium as t → ∞. If
(14) has a positive equilibrium θ(x) then any positive solution of (14) will satisfy
0 ≤ Z ≤ 1 + max

Ω
θ(x) within finite time, so the component U in the solution of (9),

(10) with the same initial data will do the same thing. The same argument applies
to W . If there is no positive equilibrium for (14) we can replace θ(x) with 0. The
analogous argument applies to W . Since θ(x) is bounded there is a constant C1

such that for any initial data 0 ≤ U ≤ C1 and 0 ≤ W ≤ C1 after some finite time.
Thus we have that in finite time the component V of the solution to (9), (10) is a
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subsolution of
∂S

∂t
= Dv(x)∆S + [∇Dv(x) +Dv(x)∇Q] · ∇S (16)

+ [−d(x) + (e(x)(eP + eP̃ )C2 − f0e
QS]S

with homogeneous Neumann boundary conditions. Equation (16) is again a logistic
equation with diffusion and advection, so again there is a constant C3 independent
of the initial data such that 0 ≤ S ≤ C3 after an additional finite time, and hence
0 ≤ S ≤ C3 in finite time. The same argument applies to Y . It follows that
the system (9), (10) is dissipative relative to [C(Ω)]4. It then follows by parabolic
regularity that the system is dissipative relative to [W 1,p(Ω)]4 for 1 < p < ∞, and
hence by embedding with respect to [Cα(Ω)]4. Using parabolic regularity again, the
system is dissipative relative to [C1+α(Ω)]4, which embeds compactly in [C1(Ω)]4.
It follows that (9), (10) is dissipative in {(U, V,W, Y ) ∈ [C1(Ω)]4 : ∇U ·~n = ∇V ·~n =
∇W ·~n = ∇Y ·~n = 0 on ∂Ω}, with a compact global attractor. Changing variables
back to (u, v, w, y) shows that the system (6), (4), (8) is dissipative with a compact
global attractor in the subspace of [C1(Ω)]4 consisting of functions satisfying the
boundary conditions (4) and (8).

The case where f(x) ≥ 0, but we allow f(x) = 0, is more delicate. It uses the
estimates on U and W from Lemma 1 but uses methods and results from [2] to
bound V and v, and similarly Y and y.

Lemma 2. The conclusions of Lemma 1 remain valid for f(x) ≥ 0.

Proof. The proof consists of verifying the conditions needed for the proof of The-
orem 4.1 of [2]. Standard results, for example from [32], imply that the diagonal
matrix of differential operators in (9) with Neumann boundary conditions (10) gen-
erates an analytic semigroup on [Lp(Ω)]4 for any p ∈ (1,∞). This is one of the
things needed to extend the proof of Theorem 4.1 of [2] to our system (9) and (10),
or equivalently (6),(4), and (8). We also need to show that solutions to (9) exist
globally in time. The estimates for U and W in Lemma 1 are still valid, so for
any initial data there are constants C0(U) and C0(W ) such that U ≤ C0(U) and
W ≤ C0(W ) for 0 < t < T , independent of T , if the solution to (9) exists on that
interval. This will allow us to show global existence, will imply dissipativity in C(Ω)
for U and W, and will be used to obtain another condition that we need, which is
the dissipativity of V and Y relative to L1(Ω). For 0 < t < T , V is a subsolution to

∂S

∂t
= Dv(x)∆S + [∇Dv(x) +Dv(x)∇Q] · ∇S (17)

+ [−d(x) + e(x)(ePC0(U) + eP̃C0(W ))]S.

Since there is a constant C4 such that −d(x)+e(x)(ePC0(U)+eP̃C0(W )) ≤ C4, we
have that S = C5e

C4t is a supersolution to (17) for C5 > 0, so by choosing C5 larger
than V (0, x) we obtain V (t, x) ≤ C5e

C4T for 0 < t < T . A similar estimate holds for
Y . Since solutions of (9) remain finite on any interval 0 < t < T , they exist globally
in time. Since solutions are global in time, we have as in Lemma 1 that there is a
constant C6 such that for any initial data we have 0 ≤ U ≤ C6 and 0 ≤ W ≤ C6

after some finite time, which implies there is a constant C7 independent of initial
data so that for sufficiently large t, 0 ≤ u ≤ C7 and 0 ≤ w ≤ C7.

Let
z = k(u+ w) + v, (18)
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where k is large enough that kc(x) > e. We have

∂z

∂t

= k(Lu+ L̃w) +Mv + k[a− b(u+ w)− c(v + y)](u+ w) + [−d+ e(u+ w)v

= k(Lu+ L̃w) +Mv + k[a− b(u+ w)− cy + d](u+ v)− d[k(u+ w) + v]

+ (e− ck)(u+ w)v

≤ k(Lu+ L̃w) +Mv + C8 − dz,
(19)

where again C8 is independent of initial conditions. Integrating over Ω and using
the no-flux boundary conditions (4) yields∫

Ω

zdt ≤ C8|Ω| −min
Ω
d(x)

∫
zdt. (20)

It follows that there exists a constant C9 such that for sufficiently large t we have
||v||1 ≤ C9, so that for another constant C10, we have

||V ||1 ≤ C10, (21)

with C9 and C10 independent of initial data. The same arguments apply to Y .
Finally, we need to verify that the equation for V in (9) yields an estimate of the
form of equation (4.9) of [2]. We have V ≥ 0 and for large t,

∂V

∂t
≤ Dv(x)∆V + [∇Dv(x) +Dv(x)∇Q] · ∇V + [−d(x) + e(x)(eP + eP̃ )C6)]V

(22)
with C6 independent of the initial data. If we multiply by V , then integrate and
rearrange terms, then use Young’s inequality, we obtain

∂

∂t

∫
Ω

V 2dx ≤ −
∫

Ω

[min
Ω
Dv(x)|∇V |2dx+ C11V |∇V |+ C12V

2]dx (23)

≤ −1

2
min

Ω
Dv(x)

∫
Ω

[|∇V |2 + V 2]dx+ C13

∫
Ω

V 2dx

for some constant C13 independent of the initial data. This is an inequality of the
type shown in equation (4.9) of [2] where σ = 1 in that inequality. Multiplying
(22) by V 3 and integrating similarly leads to an equation analogous to equation
(4.13) of [2]. The corresponding estimates hold for Y . The remaining steps in the
the proof of Theorem 4.1 of [2] then go through with only a few obvious minor
adjustments.

3. Main results. The first main result is

Theorem 1. Suppose that the domain Ω, the operators L,M, L̃, M̃ , and the coef-
ficients a, b, c, d, e, f have the forms and properties stated in section 2.1. Suppose
further that the hypothesis Ha in (2) is satisfied for some positive constant α. If L

and M satisfy the ideal free condition (5) but L̃ and M̃ do not, then (u∗, v∗, 0, 0)
is globally asymptotically stable among nonnegative solutions of (6) with u and v
positive.

Remark 1. The asymptotic stability of (u∗, v∗, 0, 0) implies that when both preda-
tors and prey adopt a dispersal strategy that produces an ideal free distribution, they
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can invade a community where neither predators nor prey have a dispersal strat-
egy that produces an ideal free distribution, and can resist invasion by any such
predator-prey pair. Therefore, in that case, the strategies that produce an ideal free
distribution are evolutionarily stable (ESS) and neighborhood invaders (NIS) rela-
tive to those that do not.

If L̃u∗ = 0 holds but M̃v∗ 6= 0 , then (9) has equilibria of the form
(su∗, v∗, (1−s)u∗, 0) for s ∈ [0, 1]; similarly, there are equilibria (u∗, sv∗, 0, (1−s)v∗)
if M̃v∗ = 0 but L̃u∗ 6= 0.

We will prove Theorem 1 via a Lyapunov function argument as follows:

Lemma 3. Suppose (u, v, w, y) is a positive solution to (6) with boundary conditions
(4) and (8), hypothesis Ha of (2) is satisfied, and that L and M satisfy the ideal
free condition (5). Let

E(t, u, v, w, y)) =

∫
Ω

H(u, v, w, y)dx (24)

with

H(u, v, w, y) = α[u− u∗ − u∗ ln(u/u∗)] + αw + v − v∗ ln(v/v∗) + y. (25)

Then
dE

dt
≤ 0 (26)

with strict inequality unless

u− u∗ + w = v − v∗ + y = 0 (27)

and
∇u
u
− ∇u

∗

u∗
= 0 if u > 0 and

∇v
v
− ∇v

∗

v∗
= 0 if v > 0. (28)

Remark: By the strong maximum principle, either u > 0 or u ≡ 0 on Ω, and
similarly for v.

Proof. We have

dE

dt
=

∫
Ω

dH

dt
dx =

∫
Ω

{α(1− u∗

u
)Lu+ αL̃w + (1− v∗

v
)Mv + M̃y (29)

+ α[a− b(u+ w)− c(v + y)][(u− u∗) + w]

+ [−d+ e(u+ w)− f(v + y)][(v − v∗) + y)]}dx.

The equilibria u∗ and v∗ satisfy

a− bu∗ − cv∗ = −d+ eu∗ − fv∗ = 0, (30)

so

α[a− b(u+ w)− c(v + y)](u− u∗ + w)

= −α[b(u− u∗) + bw − c(v − v∗) + cy](u− u∗ + w)

= −αb(u− u∗ + w)2 − αc(u− u∗ + w)(v − v∗ + y).

(31)

Similarly,

[−d+ e(u+ w)− f(v + y)][(v − v∗) + y)](v − v∗ + y)

= −f(v − v∗ + y)2 + e(u− u∗ + w)(v − v∗ + y). (32)
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Adding (31) and (32) and choosing α so that the inequality in hypothesis Ha of (2)
is satisfied gives

α[a− b(u+ w)− c(v + y)](u− u∗ + w)] + [−d+ e(u+ w)− f(v + y)][(v − v∗) + y)]

= −αb(u− u∗ + w)2 + (e− αc)(u− u∗ + w)(v − v∗ + y)− f(v − v∗ + y)2

≤ −ε[(u− u∗ + w)2 + (v − v∗ + y)2]

(33)

for some ε > 0. (The inequality in Ha implies that the quadratic form in the second
line of (33) is negative definite for some choice of α. The meaning of the inequality
in Ha is that the predator-prey interaction is not too strong relative to the strength
of the logistic self limitation terms in the model.)

The constant multiples of the integrals of Lu, L̃w,Mv and M̃w over Ω that are
present in (29) are zero because of the no flux boundary conditions (4) and (8). For
the remaining terms, we have (again using (4)

−
∫

Ω

u∗

u
Lu dx = −

∫
Ω

u∗

u
∇ ·Du[(∇u− u∇u

∗

u∗
)]dx

=

∫
Ω

∇
(
u∗

u

)
·Du[(∇u− u∇u

∗

u∗
)]dx

=

∫
Ω

Du
(u∇u∗ − u∗∇u)

u2
· [(∇u− u∇u

∗

u∗
)dx]

= −
∫

Ω

Du

(
u∗

u2

)
|∇u− u∇u

∗

u∗
|2dx

= −
∫

Ω

Duu
∗
∣∣∣∣∇uu − ∇u∗u∗

∣∣∣∣2 dx.

(34)

An analogous calculation shows that

−
∫

Ω

v∗

v
Mv dx = −

∫
Ω

Dvv
∗
∣∣∣∣∇vv − ∇v∗v∗

∣∣∣∣2 dx. (35)

Using (33), (34) and (35) in (29) yields

dE

dt
≤ −α

∫
Ω

Duu
∗
∣∣∣∣∇uu − ∇u∗u∗

∣∣∣∣2 dx− ∫
Ω

Dvv
∗
∣∣∣∣∇vv − ∇v∗v∗

∣∣∣∣2 dx
−ε
∫

Ω

[(u− u∗ + w)2 + (v − v∗ + y)2]dx.

(36)

The conclusion of the lemma then follows.

Proof of Theorem 1:

Proof. Let X ⊂ [C1(Ω)]4 be the subspace of functions that satisfy boundary condi-
tions (4) and (8). By Lemma 1, the semiflow on the set X+ of nonnegative functions
in X that is generated by (6) has a compact global attractor, so that the LaSalle
invariance principle applies; see for example [35]. Specifically, let M be the subset

of X+ such that
dE(t, u, v, w, y)

dt
= 0 for (u, v, w, y) ∈M, where E is the Lyapunov

function defined in (24) and (25), and letM′ be the maximal invariant subset ofM.
Then for solutions (u, v, w, y) of (6) in X+, we have (u, v, w, y) → M′ as t → ∞.
By Lemma 3, for (u, v, w, y) ∈ M we have u∗ = u + w and v∗ = v + y. Since
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(u∗(x), v∗(x)) is the positive equilibrium for (1), it follows that in M
∂u

∂t
= Lu,

∂v

∂t
= Mv,

∂w

∂t
= L̃w, and

∂y

∂t
= M̃v. (37)

Also, by (28) we have

∇u
u
− ∇u

∗

u∗
= 0 if u > 0 and

∇v
v
− ∇v

∗

v∗
= 0 if v > 0. (38)

.
It follows that that for u > 0 we have ∇ lnu = ∇ lnu∗ so that ∇ ln(u/u∗) = 0

and hence u/u∗ is independent of x, so u = Cu(t)u∗ for some positive function
Cu(t). If u ≡ 0 then this remains true with Cu(t) ≡ 0. Since u is differentiable in
t by parabolic regularity, Cu(t) is also differentiable in t. The analogous argument
shows that v = Cv(t)v

∗ with Cv(t) nonnegative and differentiable. By (38) we have
C ′u(t)u∗ = ∂u

∂t = Lu = Cu(t)Lu∗. The ideal free condition (5) requires Lu∗ = 0,
so C ′u(t) = 0 and hence Cu(t) = Cu for some nonnegative constant Cu. It then
follows from (27) that w = (1 − Cu)u∗, with 1 − Cu nonnegative. It follows from

(37) that 0 = ∂[(1−Cu)u∗]
∂t = ∂w

∂t = L̃w = (1 − Cu)L̃u∗. If Cu 6= 1 then it follows

that L̃u∗ = 0. This contradicts the assumption that L̃ does not produce an ideal
free distribution relative to u∗. Thus we must have Cu = 1 so that u = u∗ and
w = 0. An exactly parallel argument shows that since M̃ is assumed not to produce
an ideal free distribution relative to v∗ we must have y = 0 and v = v∗. Thus
M′ = (u∗, v∗, 0, 0), so that (u∗, v∗, 0, 0) is globally asymptotically stable.

Remark 2. Since the parallel arguments for the predator and prey are indepen-
dent of each other, if L̃u∗ = 0 but M̃v∗ 6= 0 we can still conclude that that for
(u, v, w, y) ∈ M we have (u, v, w, y) ∈ {(Cuu∗, v∗, (1− Cu)u∗, 0) : Cu ∈ [0, 1]}, and

analogously if L̃u∗ 6= 0 but we have M̃v∗ = 0 then (u, v, w, y) ∈ {u∗, Cvv∗, 0, (1 −
Cv)v

∗) : Cv ∈ [0, 1]}. In other words, two ideal free predators or two ideal free prey
could coexist, but the total predator population (respectively prey population) would
still end up at u∗ (respectively v∗), and any population that does not use an ideal
free dispersal strategy would still be excluded.

We now consider the case where Hb holds in (2). We have

Lemma 4. Suppose (u, v, w, y) is a positive solution to (6) with boundary conditions
(4) and (8), hypothesis Hb of (2) is satisfied, and that L and M satisfy the ideal
free condition (5). Let

E(t, u, v, w, y)) =

∫
Ω

H(u, v, w, y)dx (39)

with

H(u, v, w, y) = α0[u− u∗ − u∗ ln(u/u∗)] + α0w + v − v∗ ln(v/v∗) + y. (40)

Then
dE

dt
≤ 0 (41)

with strict inequality unless

u− u∗ + w = 0 (42)

and
∇u
u
− ∇u

∗

u∗
= 0 if u > 0 and

∇v
v
− ∇v

∗

v∗
= 0 if v > 0. (43)
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Proof. If we again define E by (24) and (25) and choose α = α0, then we have

dE

dt
=

∫
Ω

Hdx

=

∫
Ω

{α0(1− u∗

u
)Lu+ α0L̃w + (1− v∗

v
)Mv + M̃y (44)

+ α0[a− b(u+ w)− c(v + y)][(u− u∗) + w] + [−d+ e(u+ w)][(v − v∗) + y]}dx.
We can still use (31), and instead of (32) we have

[−d+ e(u+ w)][(v − v∗) + y)](v − v∗ + y) = e(u− u∗ + w)(v − v∗ + y), (45)

and we have a = bu∗ + cv∗ and eu∗ = d (since f ≡ 0), so (using Hb)

α0[a− b(u+ w)− c(v + y)][(u− u∗) + w] + [−d+ e(u+ w)][(v − v∗) + y]
= −α0b(u− u∗ + w)2 + (e− α0c)(u− u∗ + w)(v − v∗ + y)
= −α0b(u− u∗ + w)2.

(46)

The terms in (44) involving L, L̃,M and M̃ are the same as those occurring in (29)
with α = α0, so we have

dE

dt
= −α0

∫
Ω

Duu
∗
∣∣∣∣∇uu − ∇u∗u∗

∣∣∣∣2 dx−∫
Ω

Dvv
∗
∣∣∣∣∇vv − ∇v∗v∗

∣∣∣∣2 dx−α0b(u−u∗+w)2.

(47)
The conclusions of the Lemma then follow from (47).

To state the second main theorem we will need to state another hypothesis and
make some definitions.

Hypothesis 2. (Hc) There is a constant Cv ∈ [0, 1) such that

L̃u∗

cu∗
+ (1− Cv)v∗ ≥ 0 (48)

and

M̃

[
L̃u∗

cu∗
+ (1− Cv)v∗

]
= 0. (49)

Remark 3. In general the inequality in (48) will not hold, but it will for some

operators L̃. Recall that L̃u∗ = ∇ · D̃w(x)[∇u∗ − u∗∇Q̃(x)], so in the case where

D̃w(x) = δD̃0(x) for some D̃0(x) > 0, if δ > 0 is sufficiently small then L̃u∗ will be
small enough that the inequality in (48) will hold.

Definition: If Hc holds, let

y∗ :=
L̃u∗

cu∗
+ (1− Cv)v∗. (50)

To satisfy Hc, we must have M̃y∗ = 0. As we will show below, there are choices
of Q̃ for which M̃y∗ = 0.Thus, Hc will be satisfied sometimes.

Note that unless M̃ [ L̃u
∗

cu∗ ] = 0 the equation in (49) can hold for at most one value

of Cv. However, if M̃ [ L̃u
∗

cu∗ ] = 0 and Cv 6= 1, so that y∗ 6= 0, then the equation (49)

implies M̃v∗ = 0, which can occur only if M̃ produces an ideal free distribution.
Thus, the value of Cv for which (49) is satisfied is unique if M̃ does not produce an

ideal free distribution, that is, M̃v∗ 6= 0.
In our analysis we will want to consider solutions of the equation

M̃y = 0. (51)
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Using (7) and setting Y = e−Q̃y as in (9) in (51) yields

D̃y(x)∆Y + [∇D̃y(x) + D̃y(x)∇Q̃] · ∇Y = 0 (52)

where Y satisfies a Neumann boundary condition. Thus Y = C0 for some constant

C0, so y = C0e
Q̃.

We will want to impose (49) as part of Hc, so we want

M̃y∗ = 0. (53)

This is possible for some cases of Q̃. Note that D̃y can be any smooth strictly

positive function so choosing Q̃ does not completely determine M̃ .
If we have

Q̃ = ln(y∗) = ln(
L̃u∗

cu∗
+ (1− Cv)v∗) (54)

then y∗ satisfies (53). Also, any nonzero solution of (51) is a multiple of y∗.

Theorem 2. Suppose that the domain Ω, the operators L,M, L̃, M̃ , and the coef-
ficients a, b, c, d, e, f have the forms and properties stated in section 2.1. Suppose
further that the hypothesis Hb in (2) is satisfied and L and M satisfy the ideal free

condition (5) but L̃ and M̃ do not, so that Lu∗ = Mv∗ = 0, L̃u∗ 6= 0, and M̃v∗ 6= 0.
i) If Hc is NOT satisfied then (u∗, v∗, 0, 0) is globally asymptotically stable among
nonnegative solutions of (6) with u and v positive.
ii) If Hc is satisfied then there is a unique value of Cv ∈ [0, 1) such that (48) holds.
For y∗ defined by (50) we have

(u, v, w, y)→ {(u∗, v∗, 0, 0), (0, Cvv
∗, u∗, y∗))} (55)

as t→∞ for solutions of (6) with u, v, w and y positive.

Proof. As in the proof of Theorem 1, let X ⊂ [C1(Ω)]4 be the subspace of functions
that satisfy the boundary conditions (4) and (6). By Lemma 2, under hypothesis
Hb the semiflow on the set X+ of nonnegative functions in X that is generated
by (6) has a compact global attractor, so again the LaSalle invariance principle

applies. LetM be the subset of X+ such that ∂E(t,u,v,w,y)
∂t = 0 for (u, v, w, y) ∈M,

where E is the Lyapunov function defined in (24) and (25), and let M′ be the
maximal invariant subset of M. For solutions to (u, v, w, y) of (6) in X+, we have
(u, v, w, y)→M′ as t→∞. By Lemma 4, for (u, v, w, y) ∈M′ we have u∗ = u+w.
We then have −d+ eu∗ = 0 under hypothesis Hb since f ≡ 0, so by (6) we have

∂v

∂t
= Mv and

∂y

∂t
= M̃y. (56)

Also, as in the case of Ha, (38) holds on M′ so u = Cu(t)u∗ and v = Cv(t)v
∗. We

then have

C ′v(t)v
∗ =

∂v

∂t
= Mv = Cv(t)Mv∗ = 0 (57)

since M produces an ideal free distribution. Hence v = Cvv
∗ for some constant

Cv ≥ 0. Also, we have

0 =
∂u∗

∂t
=
∂u

∂t
+
∂w

∂t
= Lu+L̃w+(a−bu∗−c(v+y))(u+w) = Lu+L̃w+c(v∗−v−y)u∗

(58)
(since a− bu∗ = cv∗). Integrating gives

0 =

∫
Ω

c(v∗ − v − y)u∗dx. (59)
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Integrating the equation for u in (6) and using (59), u = Cu(t)u∗, u+ w = u∗, and
the ideal free condition Lu∗ = 0 gives

C ′u(t)

∫
Ω

u∗dx =

∫
Ω

∂u

∂t
dx = Cu(t)

∫
Ω

Lu∗ + c(v∗ − v − y)u∗dx = 0 (60)

so that C ′u(t) = 0 and thus u = Cuu
∗ and w = (1 − Cu)u∗ for some constant

Cu ∈ [0, 1].
Returning to the equation for u in (6) then gives

0 = Cu[Lu∗+ (a− bu∗− c(v+ y))u∗)] = Cuc(v
∗− v− y)u∗ = Cuc[(1−Cv)v∗− y]u∗,

(61)
so either (1 − Cv)v∗ = y or Cu = 0. If Cu 6= 0 then y is constant in time so that

by (56) M̃y = 0, so M̃(1− Cv)v∗ = 0. If Cv 6= 1 then M̃v∗ = 0, which violates the

assumption that M̃ does not produce an ideal free distribution, that is, M̃v∗ 6= 0.
Thus we must have either Cv = 1 so that v = v∗ and y = 0, or Cv < 1 and Cu = 0.
If v = v∗ and y = 0 then since u + w = u∗ and w = (1 − Cu)u∗, the equation for

w in (6) becomes 0 = (1− Cu)L̃u∗, so by the assumption that L̃ does not produce

an ideal free distribution (so that L̃u∗ 6= 0) we must have Cu = 1, which leads to
(u, v, w, y) = (u∗, v∗, 0, 0). The case of Cu = 0 (which can only occur if Cv < 1) is
more complicated.

If Cu = 0 then u ≡ 0 and w = u∗, and we still have v = Cvv
∗ (with Cv < 1) and

a− bu∗ = cv∗, so the equation for w in (6) implies

0 = L̃u∗ + c[(1− Cv)v∗ − y]u∗. (62)

Differentiating in t then gives

0 = −cu∗ ∂y
∂t

= −cu∗M̃y (63)

for (u, v, w, y) ∈M′ since u+ w = u∗ and so −d+ e(u+ w) = 0. Thus we have

M̃y = 0. (64)

Solving (62) for y gives

y =
L̃u∗

cu∗
+ (1− Cv)v∗ = y∗, (65)

where y∗ is defined in (50).
If Hc does not hold then (65) yields a contradiction since we must have y∗ ≥ 0. In

that case the possibility that Cu = 0 is eliminated and we have M′ = (u∗, v∗, 0, 0).
If Hc holds then by (48) the right side of (65) is nonnegative. Also, since we assume

M̃ does not produce an ideal free distribution for v∗, then since M̃v∗ 6= 0, the value
of Cv is uniquely determined by (49). Then we can have Cu = 0, so u = 0, so that
w = u∗. If Cu = 0 there is a unique equilibrium in M′ different from (u∗, v∗, 0, 0)
given by (0, Cvv

∗, u∗, y∗).

Remark 4. Hc requires rather special assumptions about L̃ and M̃ so it would be
expected to occur only rarely. Interestingly, when Hc holds, the possible equilibrium
different from (u∗, v∗, 0, 0) has the prey population density w equal to u∗, which
would correspond to something like an ideal free distribution for the prey population,
but for Cv 6= 0 the predator population is split into two parts with densities v = Cvv

∗

and y = y∗ that do not add up to v∗. The population with density v still has the
property that Mv = 0, and the population with density y = y∗ has M̃y = 0, so that
there is no net movement of those populations at equilibrium. Thus in the possible
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case where Hc holds, the second equilibrium retains some features of the ideal free
distribution. The mechanisms that allow Hc to occur and therefore make it possible
to have w = u∗ at equilibrium are not entirely clear to us. Note that since we assume
that L̃u∗ 6= 0, there is a nonzero movement term in the equilibrium equation of the
population with density w at the evolutionary equilibrium (0, Cvv

∗, u∗, y∗), which
then must be balanced somehow by the population dynamics of the system. It may
be that the absence of logistic self limitation on the predators in this case allows
them more flexibility so that the predator with density y can exploit the population
dynamical behavior of the prey by moving correctly, which might be related to why
the density y∗ has the ideal free feature M̃y∗ = 0.

We do not know the stability of the equilibrium (0, Cvv
∗, u∗, y∗) in the case

where it occurs. We suspect that it may be unstable. If it is, then the equilibri-
um (0, Cvv

∗, u∗, y∗) might simply represent the best approximation to an ideal free
distribution that is possible if the prey population with density u is not present in
the system. However, these ideas are speculative and we do not really have a good
understanding of the biology that might produce this phenomenon.

4. Discussion. Our results show that in a class of Lotka-Volterra type models for
a specialist predator and its prey, in the case where there is logistic self-limitation
for the predator, dispersal strategies that produce a joint ideal free distribution of
predators and prey are always evolutionarily stable and are neighborhood invaders.
In that case the equilibrium (u∗, v∗, 0, 0) is globally asymptotically stable, which is
consistent with the typical predictions for single species models involving the ideal
free distribution. If there is no logistic self limitation of the predator the same is true
except in a very special case where the dispersal operators L̃ and M̃ and the equi-
librium prey density u∗ for the nonspatial model satisfy the particular relations (48)
and (49). In that special case there is another equilibrium (0, Cvv

∗, u∗, y∗) where y∗

is defined in (50), so that the predator with density y, which is not ideal free in the
usual sense, and the predator with density v, which is, can coexist. Also, the equi-
librium density of prey species w is equal to u∗, the prey density for the nonspatial
equilibrium. Thus, although (0, Cvv

∗, u∗, y∗) is not an ideal free distribution in the
usual sense, it has features that are related to the ideal free distribution. We do not
have a clear understanding of the biological mechanisms behind this special case. In
a different direction, preliminary calculations suggest that results similar to those
obtained in this paper should hold for some models with a functional response, but
the conditions on the coefficients would be more complicated. In general, a system
with a functional response may have a limit cycle, and it is unclear to us whether
these is anything analogous to the ideal free distribution in that cases. However,
there are some cases where the nonspatial system for a model with a functional
response may have a unique globally attracting positive equilibrium and admit a
Lyapunov function for some parameter ranges; see for example [8]. More broad-
ly, results related to ours are obtained by similar methods in [44] for a model of
three competing species, which suggests that the general approach should work for
other systems that admit appropriate Lyapunov functions. We should note that
in [33] the authors consider Rosenzweig-MacArthur models which may have limit
cycles and find that optimal dispersal can eliminate them, but they use a different
modeling approach than we do and assume instantaneous movement.

As in the case of models for a single population in a static environment, it is
possible for the populations in our model to attain an ideal free distribution based
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on local information, namely the values of the equlibrium densities u∗(x) and v∗(x)
predicted by the nonspatial model. However, it is not clear that it is generally
feasible for organisms to sense those values, even locally. It may be that in real
systems the predators and prey actually use their current observations of their own
and each other’s local densities and/or the density of the prey’s resource, or some
simple proxy for fitness based on those. Those sorts of ideas are explored in [28, 29].
However, to capture movement based on population densities would require some
sort on nonlinear advection and/or diffusion, for example as in [22, 23], which would
complicate the analysis.

Our results require that the system of ordinary differential equations in the non-
spatial model has coefficients that are static in time and has a globally stable positive
equilibrium. In the case of a single equation, ideas and results on optimal dispersal
that are related to the ideal free distribution can be extended to the case of time
periodic coefficients (see [17, 18]). We hope to address that case in future work.
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